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F-92295 Châtenay-Malabry; France

SUMMARY

Modelling turbulent �ames with an acceptable accuracy remains an open problem. In order to progress in
our understanding of turbulent combustion, direct numerical simulations have been extensively employed
during the last decade. These direct simulations generally rely on a fully compressible formulation,
leading to extremely small time-steps associated with the propagation of acoustic waves. But, for many
practical applications, acoustic phenomena are not essential. Using an incompressible approach while
taking into account a dilatation term should then be much more e�cient in terms of computing time. In
this article we want to investigate this point by comparing results of direct simulations relying either on
the compressible equations or on the low-Mach number formulation. We employ in both cases detailed
models to describe chemistry and transport, in order to obtain an accurate description of the reaction
zones. Two test-cases are considered for the evaluation of the low-Mach number approximation. We
�rst compute the evolution of homogeneous isotropic turbulence decaying with time, without chemical
reactions. In the second case a turbulent premixed ozone �ame is investigated. For both con�gurations
the computing time associated with the low-Mach number simulation is at least an order of magnitude
shorter, while keeping a similar accuracy for the �ame properties. This demonstrates that the low-Mach
number formulation is extremely e�cient and suitable to investigate the detailed structure of turbulent
�ames when acoustic phenomena are not of primary interest. Copyright ? 2002 John Wiley & Sons,
Ltd.
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INTRODUCTION

The development of accurate models for computing turbulent �ames implies a detailed in-
vestigation of the intrinsic features controlling the coupling between turbulence and chemical
reactions. One of the best tools presently available for such investigations is direct numerical
simulation (DNS). DNS has been widely used in the last decade to provide reliable infor-
mation needed for a better modelling [1–4]. The main problem of these direct computations
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comes from the fact that they have to take into account a wide range of time-scales. In par-
ticular, DNS of the compressible Navier–Stokes equations (by far the most frequent ones in
reacting �ow studies) consider the very fast propagation of acoustic waves through the nu-
merical domain. Simultaneously, they have to cope with chemical time-scales, comprising not
only very fast reactions between intermediate species but also quite slow processes associated,
for example, with pollutant formation [5]. These contradictory requirements lead to extremely
high computing times for DNS of reacting �ows and therefore strongly limit their possible
usage to improve our understanding of turbulent combustion [6].
In this work we explore one possible way to reduce the computational times associated

with DNS. This possible acceleration comes from the observation that studies of turbulent
combustion are not focused on acoustic phenomena. In particular, we observed that in many
cases the combustion process happens at low-Mach numbers. In this speci�c con�guration the
pressure in the �ow is nearly uniform and the coupling between the �uctuating pressure and
the density can be neglected. Therefore, the system of equations based on this observation
does not have to take into account acoustic waves.
Of course, the use of this approximation for combustion applications raises up the problem

of the coupling between acoustics and chemical reactions. Prasad [7] has previously shown that
the pressure waves are very sensitive to the reaction zone, but that the �ame structure remains
unchanged if only isolated acoustic perturbations are considered, even for high amplitudes.
In the case of �ows at low-Mach numbers, the amplitude of the pressure perturbation is
very small. Moreover, for DNS, the geometry is generally open, reducing the intensity of
acoustic coupling. We therefore think a priori that the low-Mach number approach could
be successfully applied to investigate in detail the structure of turbulent �ames, and we will
check this point in what follows.
Several works have already been published concerning the possibility of speeding-up �ow

computations by modifying the acoustic phenomena [8; 9]. These methods reduce the acoustic
speed by a given factor and thereby increase arti�cially the Mach number by a similar value,
leading to a more e�cient numerical integration. In this case, the compressible nature of the
equations is conserved but the amplitude of the acoustic waves is increased. Similar arti�cial
modi�cations of the velocity of acoustic waves have also been used more recently to speed-up
steady-state computations of reacting �ows [10; 11].
In the present study, we consider an incompressible but dilatable approach, which leads us

to neglect completely all acoustic waves inside the computational domain. This formulation
has been �rst used for non-reacting �ows [12] and is of course only valid at low-Mach
numbers. Again this limitation is not a problem for many interesting con�gurations. This
incompressible dilatable formulation has been later on extended to reacting �ows [13] and
has already been successfully compared to a compressible approach using simple chemistry
[14]. The basic technique is the same for reacting and non-reacting �ows. The pressure is
divided into a spatially homogeneous part p0(t) and a dynamic �uctuating part p̃(x; t). It can
be proved that, in the low-Mach number limit, p̃(x; t) is very small compared to p0(t). We
will explain this splitting in more detail in a later section. The resulting equations contain
vorticity and entropy waves, but acoustic waves have disappeared. Therefore the time-step
is no longer limited by acoustic times, but by characteristic convection, di�usion or reaction
times, which can be orders of magnitude larger. This approach has been successfully applied
to chemically reacting �ows using fully implicit or semi-implicit algorithms in more recent
time-dependent simulations. For example, planar or axisymmetric jet �ames showing coherent
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instabilities [15–17] and the interaction between a �ame and an isolated vortex [18; 19] have
been investigated in great detail. It was always observed that, in agreement with theoretical
predictions, the low-Mach number approximation reduces the sti�ness of the system and leads
to considerably shorter computing times.
In the present work we want to assess the interest of this low-Mach number formulation for

DNS of turbulent �ames using detailed chemistry. In order to do so we will compare the results
of two di�erent time-dependent computations, both involving detailed models to describe
chemistry and transport processes. The �rst result, considered as a reference, corresponds to a
DNS using the fully compressible Navier–Stokes equations, obtained with the code Parcomb.
A second code has been derived from this �rst one using similar numerical techniques but
based on the low-Mach number approximation. In this second code we neglect acoustic waves
and the coupling of acoustics with chemical reactions. Since reactive/di�usive phenomena are
equally well taken into account, and considering that the spatial and temporal accuracy of
the numerical solution is still very high, we will call this second approach direct low-Mach
number simulation (DLMNS) in the following. By comparing the accuracy of the obtained
results, we will see that the two formulations are equivalent in the domain of validity of the
low-Mach number approximation.
This paper has been organized as follows. In the �rst section the numerical and physical

models are presented. We introduce both the compressible equations and the low-Mach number
formulation. We then present the results of two test-cases. In the �rst case we examine the
time-dependent evolution of a �eld of homogeneous isotropic turbulence. We show that the
low-Mach algorithm is able to reproduce with a very good level of accuracy the coupling
between pressure and velocity. We afterwards compute a turbulent premixed ozone �ame
using a detailed reaction scheme. The advantage of considering ozone chemistry is that it
contains relatively slow characteristic time-scales, so that the reactive terms can be integrated
in time with a fully explicit scheme while keeping large time-steps. Here again the behaviour
of the �ame front interacting with the turbulence is accurately reproduced using the low-
Mach number assumption. We �nally give some details concerning computing times and the
origin of the slight di�erences observed between DNS and DLMNS results. We conclude that
DLMNS results are of comparable accuracy to those obtained with DNS. But since the low-
Mach number code is no longer limited by the acoustic time-step restriction, a considerable
speed-up is obtained.

NUMERICAL AND PHYSICAL MODELS

Governing equations

For DNSs reactive �ows are generally described by using the compressible multi-species
Navier–Stokes equations [20; 21]:

@t�+∇ ·(�v) = 0 (1a)

@t(�Yk) +∇ ·(�vYk) +∇ ·Fk =Mk!k (k=1; : : : ; Ns) (1b)

@t(�v) +∇ ·(�v⊗v) +∇ ·�=−∇p (1c)

@t(�et) +∇ ·(�vet) +∇ ·Q =−∇ ·(pv)−∇ ·(� ·v) (1d)
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using following de�nitions:

p=
�R0T
M

et = 1
2 (v ·v) + h−

p
�

Q =−�∇T +
Ns∑
k=1
(hkFk)

�= 2
3�(∇ ·v)I − �(∇v+ (∇v)t)

where � represents the density, v the velocity vector, Yk the mass fraction of species k, Fk the
species di�usion �ux, Mk the molar mass, !k the molar production rate, Ns the total number of
species in the �ow, p the pressure, � the viscous strain tensor, et the speci�c total energy, Q
the heat �ux, � the thermal conductivity, hk the speci�c enthalpy of species k, R0 the perfect
gas constant, T the temperature, M the mixture molar mass, h the mixture speci�c enthalpy
and � the dynamic viscosity. Equations (1a)–(1d) describe, respectively, the conservation of
mass, species, momentum and energy. In fact it is possible to suppress one of the Ns equations
in Equation (1b), since the sum of all these equations corresponds to Equation (1a).

Chemical source terms and transport properties

Thermodynamics, transport properties and chemical source terms are computed in both codes
using existing available libraries, described in detail in various publications [22–25]. We
therefore restrain ourselves to a brief summary.
The chemical kinetic scheme is described using the following form:

Ns∑
k=1
�fkiSk�

Ns∑
k=1
�bkiSk (i=1; : : : ; Nr)

where Nr is the total number of reactions, �fki and �
b
ki the forward and backward stoichiometric

coe�cients, and Sk the species symbols. The molar production rate of species k is then
computed by

!k=
Nr∑
i=1
(�bki − �fki)qi

where qi is the rate of progress of reaction i, whose expression (without third body) is

qi=Kf i
Ns∏
k=1
c�

f
ki
k − Kbi

Ns∏
k=1
c�

b
ki
k

where ck is the molar concentration of species k, Kf i and Kbi the forward and backward
rate constants of reaction i. The rate constants Kf i and Kri are evaluated by considering
an Arrhenius law and the equilibrium constant is given by thermodynamics. By modifying
slightly this expression, it is also possible to take into account third bodies with di�erent
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e�ciencies [22]. All the Arrhenius parameters and the thermodynamic constants are found in
the literature. More details can be found in References [21–23].
We now explain the computation of the di�usion terms. Neglecting the Soret and Dufour

e�ects, the expression of the species �uxes Fk becomes

Fk=−
Ns∑
l=1
�D̃kl∇Xk

where D̃kl are the multi-species di�usion coe�cients and Xk the molar fraction of species k.
In order to reduce computation time [24; 25], we only take into account the diagonal terms
of the multi-species di�usion coe�cient matrix and add a correction velocity Vcorr to ensure
mass conservation. This treatment leads to

Fk=−�Yk Dk;mXk ∇Xk − �YkVcorr

where Dk;m are the projection of the multi-species di�usion coe�cients. The correction velocity
Vcorr is given by

Vcorr =−
Ns∑
k=1
Yk
Dk;m
Xk

∇Xk

This formulation is a realistic approximation to the multi-component transport properties
[24; 25] and is used in both our compressible and low-Mach number simulations. In the
future we will try to implement more accurate transport models [26] in order to take into
account the whole matrix of binary di�usion coe�cients, including Soret and Dufour e�ects.
Nevertheless, since we use the same description of the reactive and di�usive processes in both
codes, these models should not change anything for the comparisons we want to undertake
here.

Low-Mach number approximation

For many applications relying on combustion, practical devices are operated at low �ow
speeds and very low Mach numbers. When trying to simulate such con�gurations with DNS
codes, an explicit time integration of Equations (1a)–(1d) leads to severe time-step limitations
corresponding to the most critical time-scale. This fastest characteristic time-scale is associated
with the propagation of acoustic waves, leading to a wave velocity equal to the maximum
of the �ow speed plus the local velocity of sound. Using compressible equations for very
low-Mach numbers cases is then particularly ine�cient [27; 28]. It is much better to consider
a low-Mach number approximation, which enables us to solve only the vorticity and entropy
waves and neglect the acoustic ones. The derivation of the low-Mach number equations is
performed through an asymptotic expansion of the non-dimensional variables in terms of the
Mach number M [13]:

p∗=p∗
0 +Mp

∗
1 + �M

2p∗
2 + o(M

3) (2a)

v∗= v∗0 +Mv
∗
1 + o(M

2) (2b)

T ∗= T ∗
0 +MT

∗
1 + o(M

2) (2c)
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where (:)∗ is the corresponding non-dimensional variable. Expansions (2a)–(2c) are introduced
in the non-dimensional compressible equations and the terms of equal power of M are gathered
together. It turns out that the pressure p can be split into a spatially uniform pressure p0(t) and
a dynamic perturbation part p̃(x; t). Using this decomposition the equations for combustion
at zero-Mach number can be established [21], leading to

@t�+∇ ·(�v) = 0 (3a)

@t(�Yk) +∇ ·(�vYk) +∇ ·Fk =Mk!k (k=1; : : : ; Ns) (3b)

@t(�v) +∇ ·(�v⊗v) +∇ ·�=−∇p̃ (3c)

@t(�et) +∇ ·(�vet) +∇ ·Q =0 (3d)

In order to simplify the computational algorithm, it is useful to employ primitive variables
for the species equations (3b). In the same way it is easier to solve a temperature equation
instead of the energy equation (3d). The derivation of the following isobaric temperature equa-
tion is again achieved by introducing the asymptotic expansions (2a)–(2c) in the compressible
temperature equation:

�Cp@tT + �Cpv ·∇T +∇ ·
(
Q −

Ns∑
k=1
(hkFk)

)

=−
Ns∑
k=1
(cpkFk ·∇T )−

Ns∑
k=1
(Mk!khk) (3e)

Note that the low-Mach number approximation leads to the disappearance of the viscous
and pressure terms in the energy equation (3d) and temperature equation (3e). This is due to
the fact that the kinetic energy is not of the same order of magnitude as the internal energy
in terms of Mach number. The pressure splitting is also introduced in the state law for perfect
gas, which becomes

p0=
�R0T
M

It can be seen in this equation that we therefore suppress the coupling between the �uctuating
pressure p̃ and the density. As a consequence, the Euler system is modi�ed and acoustic
waves are neglected. A speci�c procedure is now required to determine the hydrodynamic
perturbation p̃(x; t). Several possibilities has been proposed in previous publications. We
decide to use a pressure-projection method [12–14], which leads to solve Equation (3c) in
two consecutive parts. In a �rst step, it is integrated considering a constant pressure, leading to
Equation (4a). Afterwards, the pressure perturbation p̃(x; t) is determined before performing
the second integration step, corresponding to equation (4b):

(�v)∗= (�v)n +�t[−∇ ·(�v⊗v)−∇ ·�] (4a)

(�v)n+1 = (�v)∗ +�t[−∇p̃] (4b)
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After solving equation (4a), we determine the pressure perturbation by taking the divergence
of Equation (4b) and introducing the continuity equation (3a) to estimate ∇ ·(�v)n+1, leading
to the following Poisson equation for p̃(x; t):

∇2p̃=
1
�t
((@t�)n+1 +∇ ·(�v)∗) (5)

This methodology is an extension to reactive �ows of algorithms employed for incom-
pressible non-reactive �ows [13]. The dilatation induced by heat release is taken into account
through the introduction of the density variation term (@t�)n+1. This term is evaluated numer-
ically in our code, using a third-order backward �nite-di�erence formulation:

(@t�)n+1=
1
�t
( 116 �

n+1 − 6
2�
n + 3

2�
n−1 − 2

6�
n−2)

In this approach the continuity equation is a constraint, which is taken into account through
the dilatation term (@t�)n+1. It is known that the �nite-di�erence approximation of this term
can lead to numerical errors [29] and other techniques have been proposed. For example, a
velocity divergence constraint can be derived from the continuity equation and introduced in
a Poisson equation with variable coe�cients. We do not use this more complex method here.
We have observed that, in real cases involving viscous �ows and thermal conductivity, the
error introduced by the numerical approximation of (@t�)n+1 is negligible compared to the
magnitude of physical e�ects.
The low-Mach number approximation we have presented here has been successfully applied

by other authors to various reacting �ows, see for example References [16; 18; 19; 30]. In the
present study we wish to compare the results obtained using both the compressible equations
and the low-Mach number approximation applied to DNS of turbulent �ames. The com-
pressible DNS code is used as the reference solution. The low-Mach number DLMNS code
is employed for the comparisons shown below. This comparison is required to demonstrate
whether or not the low-Mach number formulation can be used instead of the compressible
one for such applications (turbulent combustion, slow chemistry). For these conditions, we
expect that the coupling between acoustics and combustion will be very weak.

Numerical methods

The compressible DNS code Parcomb has already been described in detail in previous publi-
cations, see for example References [31; 32]. Equations (1a)–(1d) are solved using conserva-
tive dimensional variables. Spatial derivatives are computed with sixth-order accurate central
�nite-di�erences. Time integration is performed with a fourth-order Runge–Kutta formulation.
The treatment at the boundaries is based on the NSCBC conditions for multi-species �ows
[33].
The low-Mach number DLMNS code uses similar numerical techniques to compute spatial

derivatives and to perform time-integration. But the low-Mach number approximation leads to
a two-stage integration of the momentum equation (3c), as explained in the previous section.
Boundary conditions are simply given by Neumann (zero-gradient) and Dirichlet (constant
value) conditions, since characteristic boundary conditions cannot be used here. The resolution
of the Poisson equation for pressure is a key point of the method and is described in the next
section.
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Solving the Poisson equation for pressure

The global accuracy of the DLMNS results depends on the level of accuracy obtained when
solving the Poisson equation for pressure. In the present study, we investigate only con�gura-
tions that involve periodic and inlet=outlet boundary conditions and we use spectral methods
along periodic directions.
The �rst test-case (time evolution of a �eld of turbulence) involves periodic boundary

conditions in all directions. In this case, the integration of the Poisson equation is simply
performed as follows:

@2xxp̃+ @
2
yyp̃=f(x; y) (6)

where x and y are the spatial co-ordinates and f is the source term of Equation (5). Using
fast-Fourier-transformations (FFT), Equation (6) can be rewritten in the Fourier space:

−�2 ˆ̃̂p− �2 ˆ̃̂p= ˆ̂f(�; �) (7)

where � and � are the wavenumbers in the x and y directions, and :̂ denotes the Fourier
transform. Equation (7) is then directly inverted in the Fourier space and transformed back
to the physical space. Direct and reverse FFT’s are performed using an existing library [34]
with a high level of vectorization.
For the second test-case we consider the interaction between an initially planar premixed

�ame and a turbulence �eld. This requires the use of inlet and outlet boundary conditions in
the streamwise direction x, while keeping periodic conditions in the spanwise direction y. We
apply �rst a Fourier transform along y, so that Equation (6) can be written as follows:

@2xx ˆ̃p− �2 ˆ̃p=f̂(x; �) (8)

In order to solve Equation (8), the second-order derivative of the pressure perturbation
along the x direction is �rst discretized using a fourth-order compact scheme [35] correspond-
ing to the classical Pad�e approach. The low-Mach number code with this compact scheme is
referred to as DLMNS-CS. A �rst-order �nite-di�erence approximation is used at the bound-
aries (inlet—left boundary—, ∇p̃=0=outlet—right boundary—, p̃=; 0). We �nally obtain the
following discretization for an equidistant grid with spacing �x:

Inlet:
1
�x

ˆ̃p1(�)−
1
�x

ˆ̃p2(�)=0

Central nodes:
(

6
5�x2

− 1
10
�2
)
ˆ̃pi−1(�) +

(
− 12

5�x2
− �2

)
ˆ̃pi(�)

+
(

6
5�x2

− 1
10
�2
)
ˆ̃pi+1(�)=

1
10
f̂i−1(�) + f̂i(�) +

1
10
f̂i+1(�)

Outlet: ˆ̃pnx(�)=0

As an alternative to the compact scheme, we have also tested a fourth-order central �nite-
di�erence scheme, identical to that employed in Reference [36]. The low-Mach number
code with central �nite-di�erence is referenced as DLMNS-FD, and corresponds to following
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discretization:

Inlet: − 3
�x

ˆ̃p1(�) +
4
�x

ˆ̃p2(�)−
1
�x

ˆ̃p3(�)=0

Second node:
1
�x2

ˆ̃p1(�)−
(
2
�x2

+ �2
)
ˆ̃p2(�) +

1
�x2

ˆ̃p3(�)=f̂2(�)

Central nodes: − 1
12�x2

ˆ̃pi−2(�) +
16

12�x2
ˆ̃pi−1(�)

−
(

30
12�x2

+ �2
)
ˆ̃pi(�) +

16
12�x2

ˆ̃pi+1(�)−
1

12�x2
ˆ̃pi+2(�)

=f̂i(�)

Last but one node:
1
�x2

ˆ̃pnx−2(�)−
(
2
�x2

+ �2
)
ˆ̃pnx−1(�) +

1
�x2

ˆ̃pnx(�)=f̂nx−1(�)

Outlet: ˆ̃pnx=0

These systems are solved using, respectively, tri- and penta-diagonal matrix solvers [37]. It
would be possible to increase further the accuracy of the resolution method for the Poisson
equation by increasing the accuracy of the spatial discretization [38; 39] or by using pseudo-
spectral methods. We have not tested these solutions yet, since the obtained precision appears
to be su�cient for the con�gurations we want to investigate.

RESULTS AND COMPARISONS

Time-dependent evolution of freely decaying turbulence

As a �rst test-case we consider the evolution of a two-dimensional �eld of homogeneous
isotropic turbulence. The turbulence �eld is initialized using a von K�arm�an spectrum with
Pao correction for near-dissipation scales [40]:

E(k)=A
(u′2)5=2

�d
(k=ke)4

[1 + (k=ke)2]17=6
exp

[
−3
2
	
(
k
kd

)4=3]
In the above formula, A and 	 are constants, �d is the dissipation value, ke and kd, re-

spectively, the wavelengths of the maximum of turbulent kinetic energy and dissipation. The
velocity �uctuations are considered to be uncorrelated, so that the velocity phase is given by
a random number generator. The generation of this �eld of pseudo-turbulence takes place in
the Fourier space. An inverse FFT is then applied to compute the turbulent velocity �eld in
the real, physical space.
For the results presented in this paper, the initial �eld of turbulence corresponds to a

random-mean-square turbulent velocity of u′=3 m=s and an integral length-scale of �=
0:68mm, leading to a Reynolds number of 133 for pure air at 300K and atmospheric pressure.
The corresponding peak Mach number is about 0.01. The present conditions are therefore in
the domain of validity of the low-Mach number approximation.
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Figure 1. Isolevels of vorticity at t=2�. Solid lines represent positive values, long dashed lines negative
values. Results obtained with the DNS code (a) and with the DLMNS code (b).

The size of the computational domain is 1 cm×1 cm, discretized with a mesh of 251×251
points, leading to a constant grid size of 40�m. It is clear that such computations should ideally
be carried out in three dimensions. The behaviour of two-dimensional turbulence is di�erent
from that observed in more realistic three-dimensional computations [41]. But, again, we only
want to compare here results obtained for the same con�guration with two di�erent codes.
We do not intend to give any conclusion concerning the evolution of turbulence itself. We
therefore consider that this two-dimensional computation is a good test-case to identify possible
di�erences between the two di�erent approaches employed in the two codes. It must be kept
in mind that direct simulations of reacting �ows using detailed models for chemistry and
transport are still extremely expensive, and cannot possibly be carried out in three dimensions
on present computers, even if this particular non-reacting test-case could easily be carried out
in 3D.
Results are presented for a time t=2�, where �=�=u′=0:226 ms is the characteristic time

of the large turbulent structures. The vorticity �eld obtained with the DNS code is shown
in Figure 1(a). This result is very similar to that given by the DLMNS code, shown in
Figure 1(b). The observed discrepancies are very small. For example, the relative di�erence
is everywhere lower than 2% for the vorticity. These small di�erences are probably due to the
acoustic waves observed in the DNS simulation and neglected in the DLMNS computation.
Since the analytical formulation of the initial energy spectrum does not correspond to an exact
solution of the compressible equations, the initial conditions imposed in the two codes tend
to generate weak acoustic waves. These waves propagate through the periodic domain in the
compressible simulation and induce the small di�erences observed.
The initial spectrum of turbulent energy (Figure 2) reproduces the classical k−5=3 energy

decay for intermediate wave numbers. The energy spectra obtained with DNS and DLMNS
are identical at t=2�, as shown in Figure 2. The observed turbulence decay is close to
k−4, in agreement with previously observed two-dimensional results [42]. This proves that
the pressure-projection method is able to reproduce correctly the pressure–velocity coupling
and to capture entropy waves. The perturbation pressure p̃(x; t) obtained using the DLMNS
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Figure 2. Energy spectrum of the turbulence �eld at time t=0 (dashed line) and t=2� computed with
the DNS code (short dashed line and crosses) and the DLMNS code (dashed–dotted line and circles).

code shows a very small amplitude, close to 1 Pa, as expected. This non-reactive test-case
demonstrates that the low-Mach number approximation can be used to simulate accurately the
time-evolution of a freely decaying turbulence �eld using DNS.
Moreover, we observe that the computing time is reduced tremendously when using the

low-Mach number approach. In the present computations the time-step corresponding to a
CFL value of 0:8 is �t|CFL=8:9×10−8 s and is used as the time-step for the DNS code. The
time-step employed within the DLMNS code corresponds to a stability criterion associated
with the viscous terms, given here by �t|FOU=5×10−6 s for a Fourier number of 0:1. The
time-step used during the DLMNS computation is therefore 56 times larger than the time-step
used during the DNS computation. Both simulations have been performed on a scalar computer
SUN Enterprise 450. The computation time needed for the DLMNS simulation is 12 times
shorter than the CPU time of the corresponding DNS. This speed-up factor is smaller than
the time-step increase, since the numerical methods involved by the DLMNS computations
lead to a higher CPU cost per iteration. Nevertheless, this very large acceleration factor shows
the potential interest of the low-Mach number assumption for the investigation of turbulent
con�gurations using direct simulations. We now have to check the accuracy of this method
for reacting �ows.

Structure of a turbulent ozone �ame

As a second step we compare the results obtained with the compressible DNS and with
the low-Mach number DLMNS for a turbulent premixed ozone �ame. Previous authors have
pointed out that problems could be theoretically observed with the low-Mach number approx-
imation for very fast kinetics and closed domains. In this case a coupling between acoustics
and chemical reactions could lead to a failure of the low-Mach number hypothesis [43; 44].
Due to this fact, and since our time integration procedure is still fully explicit, we restrict
ourselves in this �rst study to ozone �ames. It is well known that the chemical processes
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Table I. Chemical mechanism employed for the ozone �ame.

Reaction A (cm,mol,s) b E (kJ/mol)

(1) O3 + O3→O2 + O + O3 3:4×1018 −1.25 96.3
(2) O3 + O2→O2 + O + O2 1:5×1018 −1.25 96.3
(3) O + O2 + O2→O3 + O2 1:7×1013 0 −8.8
(4) O + O2 + O3→O3 + O3 7:4×1012 0 −8.8
(5) O + O3→O2 + O2 2:3×1013 0 21.8
(6) O + O + O2→O2 + O2 1:4×1018 −1 1.4
(7) O + O + O→O2 + O 4:0×1018 −1 1.4

(Table I) controlling ozone decomposition [45] show very slow characteristic chemical times.
The slow kinetics of ozone lead to a very small acoustic-based Damk�ohler number. Therefore,
and since we use an open domain, the low-Mach number hypothesis should be valid in this
case.
As a starting solution we �rst compute a one-dimensional steady laminar premixed ozone

�ame for a fresh gas composition corresponding to a mixture of O3 (20%) and O2 (80% in
mole fraction) at a temperature Tu equal to 300 K and a pressure of 1 bar. The computed
laminar �ame velocity is equal to 0:3m=s and the burnt gas temperature Tb is 1092K. The initial
�ame thickness 
l, de�ned as 
l=(Tb−Tu)=|@xT |max, is equal to 0:26mm. These characteristics
are in good agreement with previously published results [46]. The one-dimensional �ame
pro�les obtained using DNS and DLMNS are shown in Figure 3. A very good agreement is
observed. In this case the Mach number value is equal to 0.001 in the fresh gas and 0.002
in the burnt gas. The order of magnitude of the perturbation pressure p̃(x; t) compared to
the thermodynamic pressure p0 is p̃=p0≈6×10−6. This ratio can be correlated to the Mach
number using Equation (2a) leading to the expression for pressure splitting, p̃=�M 2p2. In
the present case the value of �M 2≈2×10−6 is comparable to p̃=p0, showing the coherence
of the low-Mach number approximation.
In order to obtain a di�erent comparison, we also compute the total integrated heat release

rate inside the computational box. The results of DNS and DLMNS are of the same order of
magnitude:

• DLMNS results: HrDLMNS=
∫ ∑Ns

k=1(Mk!khk) dl=3:623×105 J=m2 s,
• DNS results: HrDNS=

∫ ∑Ns
k=1(Mk!khk)dl=3:510×105 J=m2 s.

The observed di�erence of 3% comes from small changes in the high-temperature part of
the �ame structure, due to slightly di�ering velocity pro�les. These velocity di�erences can
themselves be related to the di�erent boundary conditions employed in the two codes. The
DLMNS formulation uses only zero-gradient and constant-value boundary conditions, while
the DNS simulation relies on characteristic boundary conditions, where the pressure relaxes
with time towards a given level [33]. It is therefore impossible to consider that both results
should be exactly identical. The pressure and velocity pro�les are indeed very similar in both
cases, but still present small di�erences resulting from the di�erent boundary conditions.
In order to start the interaction with turbulence, these one-dimensional �ames are extended

along the y direction and the same initial �eld of turbulence is superposed on the resulting
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Figure 3. Laminar one-dimensional ozone premixed �ame computed with the DLMNS code (left) and
the DNS code (right): (a) DLMNS species pro�le; (b) DNS species pro�le; (c) DLMNS temperature
and density pro�le; (d) DNS temperature and density pro�le; (e) DLMNS velocity and pressure pro�le;

(f) DNS velocity and pressure pro�le.

pro�les. This initial turbulence corresponds to u′=1:09 m=s and �=0:72 mm, leading to a
Reynolds number of 58. The computational domain is 5mm long and 4mm wide, with a grid
size of 20 �m in both directions. The computation is periodic along the spanwise direction,
the left boundary is an inlet and the right boundary an outlet.
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Figure 4. Isolevel of O3 mass fraction YO3 =0:05 (bold solid line) and isolevels of vorticity (thin solid
lines for positive values, thin dashed lines for negative values) at t=2�. Results obtained with the DNS

code (a) and with the DLMNS code (b).

Figure 5. Isolevels of O mass fraction at t=2�. Results obtained with the DNS
code (a) and with the DLMNS code (b).

The simulations have been again performed using the DNS code and the low-Mach number
DLMNS code. The limiting time-step of the DNS code is �t=2:6×10−8 s and corresponds to
the classical acoustic CFL limitation (CFL=0.8). The Fourier criterion is the limiting di�usion
stability condition for the DLMNS code and the corresponding time-step is �t=2×10−7 s.
In this con�guration the time-step is therefore increased by a factor of 7, but we observe a
reduction in computing time by a factor of 11 using the DLMNS code. This is due to the fact
that these simulations have been performed on a highly vectorized supercomputer NEC-SX5,
so that the computation time depends on the vectorization level of each code. The obtained
vectorization is much better for the DLMNS code, thus explaining this larger acceleration
factor.
The results obtained using the DNS and DLMNS codes at t=2�, where �=0:66 ms is

the characteristic turbulence time, are shown in Figures 4 and 5. The �ame shapes, shown
by the black isolevel YO3 =0:05 (Figure 4), and the behaviour of the intermediate species O
(Figure 5) are very close in both simulations. In particular, we observe that the concentration
of the O radical is always higher in �ame regions that are highly curved towards the burnt
gases. This comparison clearly shows that the �ame presents the same behaviour with the
low-Mach number code and with the compressible one.
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Figure 6. Time evolution of the �ame surface area Sf normalized by the initial �ame surface area Sf0 .

However, we observe some di�erences. The most striking one can be seen in the vorticity
isolevels. The agreement in shape and absolute value is very satisfactory in the centre of the
numerical domain. But noticeable di�erences appear close to the left and right boundaries. As
in the one-dimensional case this can readily be explained by the di�erent boundary conditions
used in the DLMNS and DNS codes. In the compressible code acoustic waves can propagate
through these boundaries, partial re�ection can take place, and the resulting coupling between
pressure and vorticity is much more complex than what is observed in the DLMNS code,
where the Poisson equation for the pressure perturbation is only associated with simple Neu-
mann and Dirichlet boundary conditions. Nevertheless, the low-Mach number formulation is
clearly able to reproduce the advection of vorticity waves through the numerical domain, even
in cases involving di�usion and reaction of chemical species.
The objective of such studies pertaining to �ame/turbulence interaction is to investigate both

local and global �ame properties. To analyse the impact of the low-Mach number assumption,
we also compute the time evolution of the �ame surface Sf and the integrated heat-release rate
Hr . The �ame surface Sf is de�ned as the length of the isolevel YO3 =0:05 and is normalized
by its initial value Sf0 . The time evolution of Sf =Sf0 is shown in Figure 6. Here again the
results of DLMNS and DNS are similar. The �ame surface area �rst increases sharply as the
strong initial turbulence interacts with the �ame front. After one turbulence time (t=�¿1), the
turbulence �eld is well established and still curves the �ame front, so that the �ame surface
increases steadily but at a lower rate due to the viscous dissipation of turbulent structures. The
global stretch rate (1=Sf )@tSf is nearly constant. The integrated heat-release rate Hr normalized
by its initial value Hr0 is plotted in Figure 7 and the same conclusions can be drawn as for
the �ame surface area. Here again the di�erences observed between the DNS and DLMNS
results can be explained by the di�erent behaviour at the boundaries and by the propagation
of weak acoustics waves. It is possible to explain why the di�erence is smaller for Sf than for
Hr . The �ame front is located well inside the numerical domain and is therefore less sensitive
to the boundary conditions than the heat release. For this latter quantity the in�uence of slight
modi�cations in the burnt gas region, in particular near the right boundary, can slightly modify
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Figure 7. Time evolution of the integrated heat-release rate Hr normalized by the
initial integrated heat-release rate Hr0 .

the integrated value. Anyway, for both global quantities, the di�erence between compressible
and low-Mach formulations remains below 1%.
Two di�erent discretizations of the same order, referenced as DLMNS-CS for the compact

scheme and DLMNS-FD for the �nite-di�erence scheme, have been used to solve the pressure
Poisson equation (5) in the DLMNS approach. These two simulations lead to an identical ve-
locity pro�le and �ame shape. For comparison purposes we only show the time evolution of
the �ame surface area Sf and of the integrated heat-release rate Hr for these two discretiza-
tions in Figures 6 and 7. The agreement between both formulations of the pressure solver
is perfect. It is well-known that compact schemes possess pseudo-spectral properties and are
more suitable to perform accurate simulations. Since in the present DLMNS simulations the
accuracy of the results is not improved by using the compact scheme, we conclude that the
small discrepancies observed between the DNS and the DLMNS computations do not result
from the method employed to solve the Poisson equation for pressure. This shows again that
the di�erent boundary conditions are mainly responsible for the observed discrepancies.
In order to check the local in�uence of the turbulence on the heat release, we de�ne a

simple progress variable c as

c=1− Y [O3]=Y [O3]u
where Y [O3] is the local mass fraction of O3 and Y [O3]u is the mass fraction of O3 in the
unburnt gas. We plot the mean value and the root-mean-square of the local heat-release rate as
a function of the progress variable c in Figure 8. The results presented are normalized by the
same value, which corresponds to the maximum value of the local heat-release obtained in the
one-dimensional laminar DNS simulation. We observe that the mean values from DLMNS are
close to that from DNS. In the same way the root-mean-square of the local heat-release rate is
comparable for the DNS and DLMNS computations. The �uctuation level due to turbulence is
much higher than the di�erence between the two mean values, showing that the in�uence of
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Figure 8. Local mean value (lines) and root-mean-square value (error bars) of the instantaneous nor-
malized heat-release rate H∗

r versus the progress variable c for DNS (long dashed line and lower error
bars) and DLMNS computations (solid line and upper error bars) at t=2�.

turbulence is much larger than the di�erence induced by the low-Mach number approximation
itself.
We are currently working on similar comparisons for a H2=O2 �ame. Hydrogen chemistry

is much faster than ozone chemistry, requiring the use of an implicit treatment for the reactive
terms in order to be able to really increase the time-step in DLMNS computations. Of course
the comparison between DNS and DLMNS will be somewhat more di�cult, since the structure
of the DLMNS code must be modi�ed to use an implicit integration step and will become
di�erent from that of the original, fully explicit DNS solver.

CONCLUSIONS

Starting from the compressible multi-species Navier–Stokes equations, we have explained in
this paper how it is possible to modify these equations in the low-Mach number limit. The
solution method employed in the low-Mach number case has been explained and we have
fully implemented this method in a new code. We call this approach direct low-Mach number
simulation. Results obtained with this code have been compared with those of direct numerical
simulations relying on the compressible Navier–Stokes equations. The numerical methods
employed for discretization and time-integration as well as the physical models describing
chemical and transport processes are similar in both solvers. It is therefore possible to compare
directly the obtained results, considering the DNS as a reference. Nevertheless, it must be kept
in mind that the boundary conditions are necessarily di�erent in these two codes.
We have �rst computed the time-dependent evolution of a �eld of homogeneous isotropic

turbulence using both methods. The agreement between the two results is good, showing that
the pressure=velocity coupling is accurately reproduced with the low-Mach number
approximation.
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In a second step we have investigated a turbulent premixed ozone �ame. We have shown
again that the �ame behaviour is very well described by the low-Mach number assumption.
The pro�les of the main species and temperature are nearly identical to the DNS results.
Nevertheless, some di�erences appear, in particular due to the fact that the con�guration is
non-periodic in one direction. Since the two codes employ very di�erent boundary conditions,
small di�erences appear at the boundaries and tend to modify global quantities such as the
integrated heat-release rate. The evolutions of velocity, pressure and vorticity also show slight
di�erences near the boundaries. But these variations are small compared to the magnitude
of the physical �uctuations induced by turbulence. Since the origin of these di�erences is
well-understood, they do not change the conclusion that the low-Mach number approximation
can be used to investigate turbulent combustion with a good accuracy. Moreover, we observe
that computing times can be typically reduced by an order of magnitude compared to direct
simulations relying on the compressible equations.
We plan to investigate other reactive systems. In order to reach higher speed-ups, we are

presently implementing an implicit integration of the reaction terms. We will then be able to
compute turbulent hydrogen–air or methane–air �ames using detailed reaction schemes while
keeping reasonable computing times.
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